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Exact analytical description of tracer exchange and particle conversion irsingle-file systems
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The finite single-file systertdiffusion in one dimension where the mutual passage of particles is inhibited
with particle exchange at the margins and an attractive nearest-neighbor particle-particle interaction is inves-
tigated. As the central quantity, the residence time distribution is introduced and related to experimentally
observable quantities concerning tracer exchange and conversion. Exact equations determining these quantities
are derived. The numerical solution yields the dependence of these quantities on the system parameters. In
addition, the correlations in the single-file system are consid¢g8id63-651X97)02305-3

PACS numbe(s): 47.55.Mh, 66.30-h, 02.50-r, 05.60:+w

I. INTRODUCTION cal results were mainly confined to limiting cas@sfinite
length, infinite density or to approximations. The majority
Single-file systems are one-dimensional diffusion systemef questions could only be answered by numerical simula-
where the diffusing particles are not able to pass each othetions. This is what we also did in a previous papeg]
Thus a given order of the particles within the system isconcerning tracer exchange and catalytic reactions in single-
strictly maintained. This extreme mutual hindrance of thefile systems. In the present contribution we give bothaxel
diffusing particles inhibits counter diffusion and drastically describing a wider class of systems andaaralytical deri-
decreases the mobility of the particles: In an infinite single-vation for basic quanities(Throughout this paper, the sym-
file system the mean square displacement of a tagged partich®ls were chosen consistent [2].) The model and the
increases only proportionally to the square root of the obserformalism are quite general and should be applicable to other
vation time[1] rather than the observation time itself. In questions as well.
lattice gas language, the single-file system corresponds to the In Sec. Il the model is presented. It is a lattice gas or
one-dimensional exclusion mod@-5]. Note that some au- Monte Carlo jump model. It is based on simplified interac-
thors use the term single file in a less rigorous way, compristion potentials motivated by the situation in zeolitic single-
ing systems with onlyestrictedmutual passage as well.  file systemdq13] but may equally be applied to systems of a
Besides theoretical interest, the investigation of single-filedifferent physical nature. The basic quantities are introduced.
systems has been motivated by a lot of applications, e.g., in In Sec. Ill we give an exact derivation of sets of equations
the description of superionic or organic conductf8$ or for these quantities. Numerical evaluation of these sets of
transport through ion channels in biological membrags equations allows the investigation of their dependence on the
(for a more detailed summary see the introductiorf 2. parameters of the system. Section IV presents and discusses
Our work is motivated by the diffusional and catalytic pro- results concerning the tracer exchange and the conversion.
cesses in the one-dimensional channels of a lot of types ofhe correlations characterictic of the single-file system are
zeolites, e.g., Mordenite, L, AIPR5, ZSM-12, and many investigated.
more [8]. Investigations of a great variety of such systems
have been reported in the literatyfg. If the diameter of the Il. MODEL
diffusing guest molecules exceeds the radii of the zeolitic
pores, the particles are not able to pass each other any longer
and the diffusion obeys single-file behavior, as was evi- The single-file system is assumed as a linear chaiN of
denced by pulsed field gradient NMRFG NMR) measure- equidistant sites. These sites correspond to the troughs of a
ments with a variety of zeolites and guest spe¢ld. We  periodic potential describing the interaction of the particles
are, in particular, interested in two phenomena, namelyand the channel wallésee Fig. 1 Each pair of adjacent
tracer exchange and conversion. Experimental findings sugroughs is separated by a potential barrier of hefgt If an
gest surprising features in the behavior of such systems, e.ggolated particle occupies one of the sites, the channel walls
, unusual temperature dependence of chemical readtldfis  can transmit to it a fluctuating energy high enough to over-
which might be attributed to their single-file nature. By in- come this barrier and to jump to a neighboring sitd. dft is
vestigating a simplified model we aim to elucidate characterthe probability that the isolated particle performs such an
istic features allowing an interpretation of experimental re-activated jump from a particular site to a particular adjacent
sults obtained at single-file systems. one within a time interval of lengtllt, the intracrystalline
In comparison to Fickian diffusion systems, the analysishop rate of the isolated particles given by
of single-file systems is considerably complicated by the fact .
that the motion of a tagged particle is non-Markovian be- I'=Te Es/RT (h)
cause any displacementdsrrelatedto the positions of the .
other particles and, therefore, to the past dynamical develogwith the thermal energiR T. The pre-exponential factdr is
ment of the whole system. Because of this difficulty, analyti-a property of the activation mechanism.

A. Transport dynamics
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FIG. 1. Energy profile of the channel-particle interactisnhe-
matically).
At the margins, the channel shall be open to a surrounding | B 4 L O 8 o
gas phase. The potential step to be surmounted by an isolated
particle at one of the marginal sites 1 Mr respectively, in L L 1 L 1 1

order to be desorbed into the gas phas&js. Thus, the j-1 j j+1 j-1 j j+1
desorption rate of the isolated particle

e=ge EM/RT, )

FIG. 3. Total potential felt by the tagged particle ) at the four

Particles from the gas phase do not have to overcome a PQferent configurations of the neighbor particleS.

tential barrier when entering one of the marginal sites of the

channel; thus thadsorption rate of the isolated particle . . ) . )
sites only. Figure 3 gives the total potential felt by a particle

= 3) occupying sitel for the four different configurations in the
occupation of its neighboring sités-1 andi+ 1. Now con-
ider jumps of this particle to siier 1. At configuration(00)

does not depend on temperature and can be related to
P P g e hop rate I' o) Will be equal to the hop raté’ of the

Egra:s;{ ﬂgpcehrgﬁﬁsé?artifr;gezressu}eand the geometric situa- |solated particle. .At qonflguratloﬁip) the p_otentlal barrl_er to
In addition to the channel-particle interaction felt by the P& Surmounted is higher by an interaction enefgy i.e.,
isolated particle there is a particle-particle interaction. Wel’(lo)—l"e (Es*EN/RT= ,T". Here we introduce thparticle-

introduce arepulsiveinteraction at short particle-particle dis- particle interaction parameter
tances and aattractiveone at larger distancdsee Fig. 2,

as may be assumed for small organic molecules. For simplic-  _ERT
ity the particle-particle potential is assumed to affect adjacent w=e ",

4

T ] I being the factor by which the hop rate reduces if the hop is
directedaway from an occupied neighboring site. At con-
E figurations(01) and (11) a hop to the occupied site+1 is

B F - impossible,I’ 91y=1"(11)=0. This is the most important con-

K A Fo ] sequence of the particle-particle interaction because it inhib-
its any mutual passage of molecules within the channel and
thus causes theingle-file nature of the system. The same
particle-particle influence applies to the adsorption and de-
sorption processes at the margins.

The parametersl’, ¢, @, and o describe the transport
dynamics of the system completely. It is understood that
there are no correlations between the hop attempts from dif-
ferent sites or at different times. Physically this implies that
any energy transmitted to a particle is given back to the
channel walls immediately after the successful, or unsuccess-
ful, hop attempt and dissipates there at once.

B. Site occupation and residence time

FIG. 2. Additional potential caused by a particl@ occupying Consider a snapshot of the system at a given tinighen
site j—1. two types of information are relevant to our calculations
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The first type, theparticle configurationof the system, stationary i.e., they do not vary with time. This fact is most
shall be described by the set of stochastic variablegssential to the analytical treatment of the system.
3 (i=1,... N) with
C. Moments and tracer exchange

1 occupie
2i=[o]if site i is [ vacznt(f (5 We introduce thenth momentf the residence time dis-

tributions ¢;(7),

giving the occupationsof the individual sites.

The second type of relevant information is thege m [ Tm

structuré’ of the )[/)grticles, which shall be representegd by 'u'_fo Tei(ndr (12

stochastic variables; defined in the following way:
and theirweighted mean

(time which the particle occupying

sitei has already spent within the channel

= ®) LN
p=on O (13
In this definition, the property of the particlé@s residence -
time 7;) is assigned to the site occupied by this particle. If
sitei is vacant &;=0) the variabler; is, therefore, an un-
defined quantity.

Graphically, one might represent the conflguratlon by a
linear pattern of blank or inked spots while the “age struc-
ture” might be visualized by the respective color of the ink.

Now we define variables determining tpeobability dis- -
tribution of these stochastic quantities under the assumption Timra:f [1—y(t)]dt, (14)
thatsorption equilibriumis attained. The variable8; repre- to
sent thesite occupanciesr the concentration profile

The first moments(Y); are of special relevance because
they give theaverage residence timeghich can be related to
experlmentally observable quantities. Tracer exchange ex-
periments[14,15 determine thentracrystalline mean life-
time as the integral over the tracer exchange cuy(8,

where[1— y(t)] is the relative amount of particles at time
0,:=P(3;=1), t which have already been within the channel at the initial
(7)  timet,. This is measured by tracking the exchange of two
molecular species with equal transport properties, e.g. , the
1-0;=P(%;=0). deuterated and the normal form of an organic molecule. In
the following we shall show that thdynamically defined

From the profile one can define theean concentratioas . o . ) .
quantity 7,5 coincides with thestationary mean first mo-

1 N ment My given in Eq.(13). Using the stochastic variables
NE (8)  defined above, the tracer exchange curve can be expressed as
B N N .
The variablesp;(7) give the probability densities of the resi- E P(Si=17r>t—tg) 2 if ei(T)dr
dence times or theesidence time distributions i=1 i=1 t—to
1-y(t)= N = N
epi(ndr=P(rsr<7+d7|3;=1) (9 > P(2=1) > 0,
i= i=1
In some cases it is more convenient to replace this condi- (15

tional probability by a joint probability, o
where we have used Eq¥) and(10). Substitution into Eq.

e (nNdr=PE;=1r<1<7+d7)=0,¢;(7)d7, (100 (14) yields

distinguished by an asterisk and differing in theight factor % o

0,. Throughout this paper, all the quantities derived from Z ®iJ dtj drei(7)

these densities wear the asterisk, or not, according to which Tintrazl_l o . ‘T (16)
of these definitions they are based on. Again, one might in-

troduce themean residence time distributicas Z

Now we rearrange the integration

1 N
¢<T>:=—E 0i¢0i(7), (12)

i.e., ¢(7)d7 gives the ratio between the average number of f dtJt todT‘P' = j dTJ dtei(r fo Tei(7)d7.

particles havmg spent a time betweeand 7+ d 7 within the (17)
channeIE,:10,<p|(r)dr and the average total number of
particles®N. The second identity is valid only because of the stationarity

The sorption equilibrium is always assumed to have beewf the probability densityp;(7). With Eq. (8) this finally
maintained for a time longer than the residence times of alfjives the mean first moment according to E4®) and(13)
present particles. Then, all these probability distributions ar@end we have
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7'intra:(l):"‘“ (19 L K B 1 % . (23
7T ONk ON&= T
D. Laplace transform and conversion
Now we consider the irreversible conversion between twd-€-, the effectiveness factor is given by the weighted mean
species of particles with identical transport properties withinover the reactant concentration profile.
the channel. Such systems, e.g., occur in zeolites where the
sites are catalytically active. A reactant molecule occupying I1. ANALYTICAL TREATMENT

such an active site will be converted into a product molecule ] ) . )
with anintrinsic reaction rate As shown in the preceding section, the calculation of the

concentration profil®; and the residence time distributions
k=ke Er/RT. (190 i (7) give the key to important quantities of the system. In
this section, we derive a set of equations for the probabilities
Due to the exchange processes this product molecule will); and a set of differential equations of the densities
after some time, be desorbed into the surrounding gas phasg; (7), which can be transferred into sets of linear equations
In return, new reactant molecules will enter the file from thefor the moments(m)lu,i (including the average residence time
gas phase and diffuse to the active sites so that the reactigsofile (*)y;) and the reactant concentration profif .
can go on. For simplicity we assume that there is such an ynfortunately, there are no sets of equations determining
excess of reactant molecules in the gas phase so that BRese profiles directly. The reason is that the processes at any
product molecules are adsorbed again. site arecorrelatedto the statgboth configuration and “age
Let 7 be the probability that sité is occupied by a structure” of the system as a whole; they are non-
reactant molecule. Since we assumed that the system hagjarkovian. That is whye* (7) and ®; are probabilities of
been in sorption equilibrium for a time longer than the resi-the dependenset of stochastic variabl&; andr;. Thus we
dence time of the “oldest” particle, the conversion is in a have to look for suitablgoint probabilitiesand to calculate
steady state. This means that tieactant concentration pro- the profiles from them by summation. The joint probabilities
file n is stationary as well. It can be calculated from thenow refer to a Markov process.
residence time distributiong;* () by the following argu-
ment. ¢} (7)d7 is the probability that a given siteis occu-
pied by a particle and that this particle has spent a time ] ] S ]
betweenr and 7+ dr within the channel since its adsorption At first, we define probabilities of the individual configu-
as a reactant molecule from the gas phase. During this time f&tions @1,072, ... o) of the system
had the chance of being converted into a product molecule GO _ _ _
(this conversion may have happened at an arbitrary time on Ono I IN=P(21=01,22= 07, .. A= on). (24
an arbitrary site The probability, however, thato conver-
sion has taken place is™". The average probability that
there is a particle at siteé and that this particle is still a
reactant molecule is, therefore, given by

A. Concentration profile

Once these joint probabilities are known the concentration
profile can be calculated

1 1 1 1
®i: 2 2 2 E ®0’1--~0’i_110-i+l...0—N.
71=0 0i-1=0 0j4+,=0 on=0

7= fo e oF (1)d7. (20 25

Thus the reactant concentration profit§ happens to be The joint probabilities Eq(24) can be determined by a set
nothing else than the Laplace transform gf(7), with k  of linear equations. In order to understand the course of the
being the new variable. From the profile one obtains thecalculation, first consider a fictional system with three states

mean number of reactant molecules per channel (probabilities @@, 6, ©®) and transition rated’; .,,
I'y_.3, etc). With, e.g.,I';_,,dt being the probability of a

N . transition from state 1 to state 2 occurring during a time
H* =i21 7 (21)  interval of lengthdt, one has the identity
Obviously, this quantity describes the transport influence ©"lt+at=(1=T1_2dt=T_sd)@W|+T,_,dt®@?)],
on theoutput rateof product molecules per channel +T5,dtOd)], 26)
K=H*K, (22

where the first line on the right hand side describes the case
and can therefore be related to th#ectiveness facton of no transition during the time intervalt, the second one
widely used in the theory of heterogeneous catalysiss  the transition from state 2 to 1, and the third one the transi-
defined as the ratio between the actual output of thdion from state 3 to 1. Similar identities hold f&@® and
transport-reaction system and the output that would be a®‘®). Provided the system is stationary, i.e., the probabilities
tained if the product molecules were instantaneously redo not depend on time, one can omit the time dependent
placed by new reactant moleculgsh, 16. Thus one has via subscript and se® @], ;;=0®|;=0®. Subtraction of
Egs.(21) and(22) 0@ on both sides and division byt then give
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0=-T, ,00-T, ,09+T, ,02+T, 00, file system. Although it has a vast number of configurations
(270  of the form (01,05, ... ,0y), there are only a few transi-

tions with nonzero probability starting from each of these

This is, of course, nothing else than a master equation of @nfigurations. Each such transition corresponds to a hop of
stationary process. Its derivation has been given in order tg icle from an occupied site to a vacant neighboring site,
prepare for the calculation in Sec. IV. The factors in front offrorn an occupied marginal site into the gas phase, or from

. (1) . . . i i . X .
(W;;[.h hthe rr:mui sigh r;epresgr:t .th::hrates qfdall tdrar;s[[ the gas phase to a vacant marginal site, respectively. We give
lons whichmust notoccur to maintain the considered State ., complete set of equations at once in the form of (@)

i i (2) 3) (wi
1.’ while the factors in front °®. . and@)_ (with the pIL.JS and explain it term by term afterwards. For each configura-
sign) are the rates of the transitions whiblave tooccur in . . X
tion (04,05, ...,0q) One has an equation of the following

order to switch into state 1. form:
Prepared in this way, we return to our considered single—orm'

0=—(a(l—01)+eo1(l—Q0,))0

N-1
—szl (1-Qoj-1)oj(l-0j11)+(1=-0))0j+1(1-Q0},2)0
—(1-Qoy-1)one+(1-0oy\)a)O
+(aoi+e(l—0)(1—Q0o,)01 o0

N-1
+szl (1-Qoj-)(1-0j)ojr1t0oj(l-0j11)(1-Q0j, )0 7+17% "
+((1_QO'N_1)(1_O'N)8+O'Na’)®'“(lioN)

VO']_, ...,0'N=0,1. (28)

So far, this set of equations has no unique solution becaude o if the hopping particle feels the attractive force of a
the equations add up to zero. The missing equation is prgparticle at site 2 ¢,=1); here we have made use of the

vided by the obvious identity abbreviation
1 1 0=1—w. (30
2 E % ON=1. (29
o,=0 on=0

The (N—1)-fold line 2 describes all transitions due to hops

between the site pailjsj + 1. Their rates are proportional to
Here and in all the following equations we abbreviate thel’. The left term stands for a hop from siteto sitej +1; its
upper index ‘oyo,---oy” by dots “---” indicating ex-  rate is nonzero foroj=1,0;.,=0 only; the factor
plicit deviations from the normal order only, i.€, " means  (1—Quo;_,) represents the interaction influence as discussed
0172 oN @17 ) means® (772N etc. before. Analogously, the right term considers the backward

The two terms in each line of Eq28) always correspond hop. Finally, line 3 is the mirror analog to line 1 describing

to the transitions due to hops between the same pair of neiglthe adsorption and desorption processes at the right margin.
bor sites(or between a marginal site and the gas phase, re- Now we turn to the transitions whiclead to configura-
spectively but in opposite directions. First consider lines tion (o4, ...,0y) (lines 4-6, plus sign The structure of
1-3(minus sign which correspond to transitions that would these lines is very similar to that of lines 1-3 because the
make the systemleave the considered configuration transitions correspond to the same particle hops. They differ,
(o1, ...,0n). Line 1 considers the transitions due to hopsthough, in two points.
between the gas phase and sitex{1— o) is the transition The probability factol® """ is replaced by the probability
rate due to adsorption events; it is proportional to the adsorpaf the starting configuration where the respective transition
tion rate @ of the isolated particle but zero in the case ofgoes out. Note that the starting configurations for hops that
o,=1 (i.e., site 1 occupied ed1(1— Qo) represents the only differ in their directions have, nevertheless, an equal
transition rate due to desorption events; again it contains thmathematical form since, in both cases, the two sites in-
respective ratee and the factoro, being zero if site 1 is volved in the hop simply exchange theirvalue. Of course,
vacant. The remaining factor (1Q0o,) has regard to the there is no starting configuration for which the two transition
attractive interaction between neighboring molecules: it igates(i.e., the two terms on the lineare nonzero simulta-
equal to 1 if the neighboring site is vacamt,=0) but equal neously.
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In each term, factors of the form (4o;) are replaced by 00=0, on.1=0 (31)
o; and vice versa. This is because the valuesopfnow . "
correspond to the configuratiafter the transition, while in  has been assumed in order to prevent further splitting of
lines 1—3 they had corresponded to the configuratiefore ~ these lines into special cases.
the transition. The interaction factors {X2o;) remain un-
affected since they do not change during the transition.
We have to supplement that in lines 2 and 5 the conven- In analogy to Eq(24) we define joint probability densities
tion replacing the densitieg] (7) of Eq. (10)

B. The residence time distributions

(,Di(rl"'(ri’l*a-i“m”N(T)dT= P(Z1=01,....2%_1=0_1,2i=1211=0i41, . . . .2n=0ON,T<T<7+d7). (32

In addition to the upper index of th&®?1 9N the has already spent within the system, it increasedtgs the
time proceeds bylt. Consequently, we have to write

*
01 0i—1" 041"

| "“N(7) wear a lower index corresponding

to that of theg;* (7). It gives the number of the “tagged”

; ST . : O(r+dt =(1-T,_,dt—T;_5dt)e¥
site: This site is meant to be occupied, and the particle oc- © (7+dD)]s = 1=2 1-3d0 ¢ (),

cupying it has spent a time betweerand 7+ d+ within the +T, 1 dte@(7)|+ 5 ,dte®(7)];.
system[cf. Eq. (32)]. That is why the upper index now con-
tains the asterisk holding the place of the missingvhich (34)

would always be equal to 1. Tﬂfl upper and lower indexf we now proceed as beforkomitting the time subscript,
together now distinguish thl X 2"~ quantities defined in  gyptraction ofp¥)(7), and division bydt] ¢¥)(7) does not

Eq. (32. (In contrast, the upper index of tH8”+"N can  cancel| againste((7+dt) and we obtain, in the limit
distinguish between "2 quantities) Again, the densities dt—.0, the first derivative with respect ta The analog of

¢} (7) can be computed from the joint densities by Eq. (27), therefore, reads
S SS W= Ty W) Ty gD (n) 4T 16 (7)
eH(N=0ip(n=2 - X X - dr n o o
01=0 0i-1=0 0j;11=0 3)
. +T31¢0"(7). (35
% 2 (Piol---tfi—l* Ui+1--~oN(T)_ (33 Therefore,. in*order to get an equation for the joint proba-
oN=0 bilites o+ 7I~1 71*1""N one has to replace the zero on the

To establish a set of equations for the joint densitied€ft hand sides in Eq(28)_by the first derivativ_e. _Further
changes are due to the different forms of the indices: Each

@t T T TN(T), we first consider the fictional three- time the respective hop involves the tagged site indicated by
state system again. If we write Eq26) for r-dependent the lower indexi, some lines of the equation take a special
quantities e (7),e?(7),0®)(7), we have to pay special form. Again, we write the set of equations in full and explain
attention to the argument. Singemeans the time a particle it afterwards.

a_goi"'= —(a(l-0y)+eo(1-Q0,)e

N—-1
—rgl (1-Q0j_1)oj(1= 011+ (1= 0)) 0+ 1(1-Q0j12)e;

—(1-Qoy-Donet (l-on) @)

S(7)@%2 N j=1

+ +e(l— 1-Q —oq)- -
(aoi+e( aq)( 03)) (pi(l 1)  else
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0% Tj g

N_1 Pit1 1=
+Fj21 (1-Qoj_)(1-0j)oj41t0j(1—0),1)(1—Q0j2)) @i';'fifz*ogiﬂw- i=j+1
@, TITT ) else
(1)@ on-10 j=N
+(1-Qon_1)(1—on)e+oya) goim(lfg’\'), else
Voi,...,0i_1,Ci+1, --.,0n=0,1; i=1,... N, (36)
with the initial condition sorption, however, the particle occupying the tagged site 1
after the transition came from the gas phase, i.e., it did not
¢i (0)=0. (37 spend any time within the channel. Therefore, the density of

its residence time is given by(7). In order to obtain the
joint probability density needed here it has to be multiplied
by the probability of the configuration before the transition
o=1. (39) which is characterized by, =0.
A similar argument applies to line 6. Lines 1-3 are simi-
Moreover, we omitted the argument which is alwayd.( lar to that of Eq.(28): Since no transition occurs, no special
Note that the abbreviated upper index of thg " contains Ccases have to be considered.

*
T Oi—-1 Ti+1" " ON

the asterisk instead af;: ¢; " means<pi"1 ,
etc.

The rate coefficients in Eq36) are completely equal to  AS indicated by Eq(20) the profile of the reactant con-
that of Eq.(28) because the underlying transitions are all thecentration can be obtained frqm the densities qf the residence
same. The change in the index connected with the respectiyénes by Laplace transformation. Thus we define
transition, however, has now a different mathematical form " .
in certain cases which, therefore, had to be seperated. Con—ni"l'""ifl*"iﬂ"'”N:J e—kfgoi"l"‘”i—l"iﬂ“"’N(T)dT_
sider first line 5. The “else” branch corresponds to the “nor- 0
mal” case, as in Eq(28). If i=j the transition is due to a (39
hop either from the tagged siieto sitei+1 or from site
i +1 to the tagged site The former case cannot lead to the
considered configuratiofwhereo;=1) and need, therefore, ! .
not be consideredthe convention Eq(38) automatically 7" = D D NI L
cancels the corresponding rate coefficleht the latter case, 7170 0i-170 0170 on=0 (40)
the particle which occupies the tagged site after the transi-
tion, came from siteé +1; that is why the variable with the A linear set of equations determining the quantities
lower indexi +1 has to be used here instead of that with o1 0T ON t ilv obtained by Lapl ¢
Its upper index reflects the situation before the hop: kite K . 'S Most easl y_o _aune y_ ap a_ce rans-
was vacant(indicated by the 0 in the place af)), site formation of the set Eq.36). Taking into consideration that
i+1 was occupiedhere indicated by the because of the w d
formation law of the indices the other sites were unaffected. J e ‘”( ar o '(r)) dr=kz; " (41
Finally, the case=j+1 means hops between site 1 and 0 T
the tagged si_tda an_d has to_be treated i_n an ana!ogous Wayicf. Eq.(37)] and

Now consider line 4 which deals with transitions due to
hops between site 1 and the gas phase. If site 1 is not the
tagged one we again have the “normal” case. The special
case is =1. Again, the convention Eq438) provides a zero
transition rate in the case of desorption. In the case of adene gets

The relatively compact form of the set is possible only with
the additional convention

C. The reactant concentration profile

Laplace transformation of E¢33) then gives
1 1 1

J Oce"“ﬁ( rdr=1, (42)
0

0=—kgp "

—(a(l-0y)+eoy(1-Qap)) 7y~
N—1
—rgl (1-Qoj )oj(1-0j 1) +(1-0)) o). (1= Qaj. )7

_((1_Q(TN_1)(TN8+(1_0-N)a)7]i‘H
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Q%2 on =1
+(aoi+e(l1—0)(1—Q0ayp)) ﬂi(ligl)ma olse
w010k gj4p- - —
. L i=
N_1 Tit+1 J
o 00 ..
+F121 (1-Q0j-)(1-0))0j11t0i(1-0.)(1-Q0j42)) 7, 2", i=j+1
77imaj+lajm, else
e on-10 j=N
+(1-Qon_1))(l—0opn)et+onya) ni..,(l_UN), olse
V(Tl,...,(Ti_j_,O'H_l,...,O'Nzo,l;izl,...N. (43)

The inhomogeneity of this set consists in the terms W@iflf2 "N and @71 **N-10 in lines 4 and 6, respectively, which are
known from the solution of Eq28).

D. The moments

If the Laplace transformation in the preceding section is replaced by the “transformation” given {dZane gets the
moments (M y; and their mean™ u. As before, we define

(m)M."l"'”i*l*”Hl”"’N: fmrmqoigl'”Uifl*a”lmaN(T)dT, (44)

yielding the weighted moments

1 1 1 1
Mpf=0; Mu= 2 o X X e X My Jr e (45)
01=0 0i-1=0 0j;1=0 on=0

and, finally, ™, due to Eq.(13). Applying the transformation Eq12) to the set Eq(36), we now observe that

o d o
fo Tm(aﬁoi"(T))dT:[Tm<Pim(7')]f=o_ fo mr™ o () dr=—m (ML (46)

and

J: ™8(7)d7=0, (47)

and we get
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—m MYy =—(a(l-0oy) +eai(1-Qar) Mpui”
N—1
—Fj; (1-Q0j-1)oi(1=0j1 1)+ (1= 0704 2(1- Qo) Mai

—(1-Qon-1)one+(1—oy)a) (m),U«im

0, i=1
+ +e(l1— 1-Q —oq)- -
(aoyte( o1)( T3)) (m)ﬂi(l 1) . else
s 0i_ 10k 0o _—

N-1 (Mg o=

+szl ((1—90'1'71)(1—O‘j)0'1'+1+0‘j(1—0'1'+1)(1—90'j+2)) (m)Mi‘;-iri720(7i+1--‘, i:j+l
(”‘),ui'“ 197 else
0, i=N
+((1—QO'N,1)(1—O'N)8+U'NC() (m)Mi...(l_gN), else
VO']_,...,O'i,]_,O'iJrl,...,O'N:O,l; |:1,N (48)
|
Now the inhomogeneity is due to the termam (M~1) lated particle,r=1/2I", as a unit of the time scale and define

on the left side, which are known if the moments are calcuthe relative particle exchange rate
lated successively. On calculating the first moments one has A

to use a  «a

a= Ezgei(iEBwRT (51

(O)Mi"':f (Pi‘"(T)dT:@‘Tl"'ffi—lllfwl'“ffN, (49 . . -
0 and, for the conversion, thelative reaction rate

which are solutions of Eq28). The factors “0" in the cases K K
i=1 andi=N, simply mean that the respective line van- k= —=— . (ER"Ep)/RT (52)
ishes. 2" o1

IV. RESULTS AND DISCUSSION The remaining parametef$ and w are already dimension-

less by definition. The new set of parameters now is,
The sets of equation@8), (48), and(43) deduced in the a, «, andN.
preceding section were implemented into a computer pro- Unfortunately, the parameter range accessible by the al-
gram which solved them using the Gauss algorithm. In thigyorithm is subject to considerable numerical limitations. By
way, the dependence of the profil&,, (V.. 7*, and their  far the most serious one is the limitation of the file length
means or totals), M., H*, on the system parameters could N by memory size problems. Even using a special version of
be studied. Scattered within the whole parameter range, thihe Gauss algorithm taking advantage of the rather sparse
validity of the results was checked by comparison with thecoefficient matrix, the memory space needed is of the order
results of Monte Carlo simulatior(sising an algorithm simi-  2NxN2N~1 multiplied by the number of bytes per coeffi-
lar to that described ih12]) confirming full conformity. cient. The computer equipment at our disposal, therefore,
For a number of reasons it is convenient to introddce allowed a maximum oN=11. But even if these memory
mensionless parameteras had been done [12]. The pa- limitations could be overcome, the computation time sets its
rameter limit approximately at the same place, since it increases with
increasingN due to a power law with an exponent of at least
e o 4. That is why all algorithms swapping parts of the matrix to
v=—=—e Em/RT (50)  the disc are of no use here. Iterative procedures like Gauss-
¢ a Seidel cannot help either because the matrix does not fulfill
their convergence criterigl7]. Although invoking the sym-
gives the ratio of the rates of adsorption and desorption ofnetry of the system would reduce the number of equations
the isolated particle and is, therefore, tightly connected withper set by a factor of the order of 2 this corresponds merely
the sorption equilibrium. To get rid of the parameifewe  to a gain inN by 1; instead, the symmetry would be lost as a
choose the average time between successive hops of an isneans of checking for numerical instability. Recent tests,
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FIG. 4. Concentration profil®; over the site number for
v=10 and different strengths of the attractive particle-particle in-
teraction.

FIG. 5. Mean concentratio® overv for different strengths of
the attractive particle-particle interaction.

however, suggest that the conjugate gradient method migwpmmete occlupathanl) to the almost empty Cha_nnel

be a promising way to increase the maximal value of thd @~0). Outside this region, the mean concentratirstill

system sizeN. In all calculations presented here, we chosevaries withu (the linear plot deceives the eydor largev

N=8 as a compromise between computation time neede@€ have an asymptotic behaviér:1/v, while for smallv a

and information gained. similar relation holds for the “vac_ancy concentration”
The second limitation affects the range of the parametefl— ®)>v. The parametea does not influence the concen-

k in the calculation ofp* . Since the coefficient in front of {ration, as can be shown by the detailed-balance arguments.

n;"" (i.e., the diagonal element of the majrbontains a sum
roughly of the formN+k/T", the numerical accuracjnum- B The tracer exchange

ber of digitg of the computer sets a lower limit to the pa-  Figure 6 shows the average intracrystalline residence time
rameter «=2k/I'. Using double accuracy, we reached profile (Y)y; for the same case as considered in Fig. 4. Note
x~10"** without signs of numerical problems. that this profile doesot give the average time the particles

It is worth noting, however, that the range of parametershave spent at the individual sites, but the averaal time
that can be evaluated by Monte Carlo simulations is limitedthey have spent in the channel when reaching a certain site.

as well. Although the file length can easily be chosen up tAs expected, this average time is largest in the center of the
almost any value without memory trouble, the computationchannel.

time necessary to reach sorption and reaction equilibrium is
extraordinary. Tracer exchange studiesN+ 50, e.g., are a
matter of weeks of uninterrupted computation. The range of 108 T T T T T T
« is confined for the same reasonso- 10~ ° approximately. oo ~

Thus, the use of the exact solution indeed provides new in- ~ ~
formation. The authors are optimistic that, pending further (1)M oT , .
computer development, the restrictions mentioned should be 2
overcome in the future. / w =

10° |/
A. The concentration profile e ' \

In the casaw=1 (no attractive interaction of neighboring / PN . N
particleg the concentration profile is uniform:0; b T SN
=1/(1+v)Vi [12]. With increasing strength of the attractive 4 S
interaction (decreasingw) the particles concentrate in the Vi N
middle of the channel. Figure 4 shows some typical ex-
amples. 100 ! ! L 1 ] !

In Fig. 5 we present the dependence of the mean concen- 1 2 3 4 5 6 7 8
tration ® on the parameters. The individual graphs show the ¢
dependence on the parametefor different strengths of the
attractive interactior(different values of the parameter). FIG. 6. Average intracrystalline residence time profiféu; (in
The stronger the attractive interaction the narrower is theinits of r=1/2I') over site number for v =10,a=0.5, and differ-
region ofv where the concentration changes from the almostnt strengths of the attractive particle-particle interaction.
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FIG. 7. Mean intracrystalline residence tim&u= 7y, (in
units of =1/2I") overv for a=0.5 and different strengths of the
attractive particle-particle interaction.
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FIG. 8. Mean intracrystalline residence tim&)u= 7 (in

of the attractive particle-particle interaction.

The weighted mean of the first moments or the intracrys-
talline residence timeY) = 7y, is given in Fig. 7, param-

eter ranges and symbols chosen equal to Fig. 5. For eaghy

units of r=1/2I") dependent on the relative rate of particle ex-
change at the margifparameten) for v =1 and different strengths

centration in the middle of the channel reaches Zefothe
sex=1 in Fig. 9. In this case, the mean number of reac-

strength of the attractive interaction, one can distinguishsnt moleculesH* . does not increase any more if the file

three regions within the range of the parametein the case

lengthN increases; i.e., the values ldf* calculated for such

of very smallv, where the channel is almost completely ;555 are equally valid for arbitrarily longer chanrjal].

e ; X In comparison withri,,,, H* depends on a further pa-
one “isolated vacancy” in the channel which determines the, 5 meter, the relative reaction rate To show the dependence
dynamics alone; the curves for the different values of the,, g the parameters one would need a considerable number

occupied(cf. Fig. 5, one finds, most probably, not more than

parametetw are parallel and obey a power law n In the

of diagrams. This is why a more compact representation is

opposite case, for large values ofwhere the channel is  yesjrable. Moreover, we are particularly interested in the
almost empty, one reaches the case of the isolated particlgymperature dependenaé the conversion under single-file

.e., the system loses its single-file nature and behaves agyngitions. For zeolitic single-file systems, the parameters,
cording to normal diffusion. Therefore, the system responsg nich most strongly vary with temperature, akeand v

does not depend on the parameterand «» anymore, be-

concentration or the particle-particle interaction. The third
region, the position of which depends @ provides the

transition between theses two extreme cases and reveals the .

actual characteristics of single-file diffusion. One observes
that the slope of the curves in this region increases with
increasing strength of the attractive interaction, i.e., the at-
tractive interaction enhances the sensitivity of the system
response to changes in the parametéas was already seen
in the dependence of the concentrati®ron v).

Figure 8 shows the influence of the margin on the mean
residence time. For very small values of the parametire
marginal barrier dominates the dynamics of the system. This
influence, however, is driven back with increasing strength
of the attractive interaction.

C. The catalytic reaction

In Fig. 9, the reactant concentration profile at several rela-
tive reaction rates is given and compared with the total con-
centration profile £=0). In the middle of the channel where

) ¢ - - while the other parameters, », and N, are not, or only
cause the isolated particle is unaffected by changes in thg

ightly, temperature dependent. It would, therefore, be most

;i

0.5

0.4
0.3
0.2

0.1 =

particle exchange with the gas phase is slow, the reactant FiG. 9. Reactant concentration profitg® for v =10, @=0.1,
concentration drops. If the parameters are adjusted so that the- 0.5, and different values of the relative reaction rateThe
residence times in the channel center are large enough, @tirve forx=0 (no conversiopcoincides with the total concentra-
simply if the channel is sufficiently long, the reactant con-tion profile.
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instructive tosimultaneouslyshow the influences ok and

v and their interplay. The isoline representationttf, al-
ready introduced ifi12], meets all these requirements. In the
plane of the parameters and v, the isolines connect all
points with equal values dfl*. The spacingbetween adja- 10"k -
cent isolines tells us how strortg* varies with the param-
eters: Narrow spacings mean a strong dependence and vice
versa. Thedirection of the isolines with respect to the axes
reveals the relative influence of the two parameters: The pa- 10° + 7]
rameter whose axis direction is nearer to the direction per-
pendicular to the isolines predominates in the considered pa-
rameter region. The temperature dependence can be read 10°
from the isoline representation in the following wi2]:

For fixed values ok, «, I', Ey;, Eg, andEg [cf. Egs.(50)
and (52)], both (Inv) and (Ink) are proportional to RT.
Since we choose log axes in the,{) plane, one simply 10°*
moves on a straight line when varying the temperature. Ev-
ery given temperature interval corresponds to a certain sec-
tion of this straight line. The more isolines are crossed by 5
such a fixed section, the strondéf depends on temperature 10
(i.e., the higher is the absolute value of the “activation en-
ergy” of H*). If, with increasing temperature, the isolines
are crossed in ascending order, the “activation energy” of 10° L
H* is positive, or vice versa. Once the straight line is fixed 0.0001 0.01 1 100 10000
(i.e., the temperature dependence of the parametessd
v is fixed) the activation energy dfl*, within a given tem-
perature region, thus can be read directly from the direction
of its isolines(or, more precisely, from the angle between the  FIG. 10. Isolines of the mean number of reactant molecules per
directions of the straight line and the isolin@sd the mutual channelH*, on the (,v)-parameter space fa=50, w=1. (All
spacing between adjacent isolines. In the following we givesolines belowH* =0.46 are omitted.
the isoline representation for several choices of the relative
exchange rata and the interaction parameter. again. In this case, there is a maximumHsf approximately
Figure 10 shows the isolines f* for a system of fixed in the middle of the representaedrange resulting from the
length N=8 with rapid particle exchange at the margin competition of two contrary effects. if is decreased from a
(a=50) and without attractive interactiom& 1). This rep-  high value the total number of particles in the file increases
resentation is very similar to that already giverj 2] (there  so that, as in the case of smallH* might increase. Simul-
the limit a—o was considered, and the file lengthwas taneously, however, the mutual hindrance of the particles
chosen large enough to ensure zero reactant concentrationiifcreases so that their mobility drops and their residence
the channel center, so that the representation was valid faimes increasécf. the increasing mean residence time at de-
any sufficiently long channgl The topology of Fig. 10 can creasing values of in Fig. 7). If the time the particles stay
be understood in the following way. Consider first a linein the channel is long, their chance to be converted is high,
parallel to thex axis for a small value of where the file is  so that the numbeH* of reactant particles eventually de-
almost completely occupied¥=1). In the lower region of creases.
the figure, where the reaction is fast, i.e., at large values of Now we reduce the particle exchange at the margin. In
k, the molecules are converted soon after they enter theig. 11 the cas@=0.5 is considered. The direction of the
channel. This leads to a very small numb#t of reactant isolines is still the same as for the rapid exchange, but the
molecules within the file. I is decreased, i.e., the conver- narrower spacings show that the sensitivity to the parameters
sion becomes slowerd* increases, ultimately to reach has increased. Moreover, for constantthe maximum of
O®N~N=8, when almost all molecules in the channel re-H* has translated to larger values of the parametésince
main reactants until they leave. K is further decreased, the concentration does not dependarthis means that the
H* cannot increase any more, so that no more isolines folmaximum is now attained at a lower concentration
low above. Now fix the parameter at such a small value Finally, we investigate the influence of the attractive in-
and increase the parameterThen,® decreases from¥1 to  teraction. We choose=10"* which is the strongest inter-
~0 according to Fig. 5. Consequently,* decreases from action of those considered before, see Fig. 12. There is a
~N to ~0. In Fig. 10, this is expressed by the region of further translation of the isoline pattern to larger values of
isolines parallel to the axis. (Of course, there are infinitely v, this time connected with the translation already observed
more isolines forH* <0.46 which, however, are omitted. in the dependence of the concentrati®dnon v (see Fig. 5.
They would simply fill up the entire right part of the dia- For values oH* larger than 2corresponding to the case in
gram, as well as the left lower corneFinally, consider a which more than only the two marginal sites contribute to
large value ofx, e.g. ,k=102, and vary the parameter  the reactiol, however, we observe a drastic change in the

1012 T T |
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FIG. 11. Isolines of the mean number of reactant molecules per FIG. 12. Isolines of the mean number of reactant molecules per
channelH*, on the (,v)-parameter space f@=0.5, o=1. (All channelH*, on the (,v)-parameter space fa=0.5, =104
isolines belowH* =0.46 are omitted. (All isolines belowH* =0.46 are omitted.

direction of the isolines; obviously the parametegains a  particle-particle interactiom =1, the occupations at differ-
stronger influence in this parameter region. As we alreadgnt sites are independent from each otle(% ,2;) =6 ;.
stated before, the attractive interaction increases the sensitiwith increasing interaction strength, the dependence in-
ity to the parametev. The steeper direction of the isolines creases, as is shown in Fig. 13 fer=0.0001 ancy =4000
expresses a change in the temperature dependence: The @=0.249). This plot proves that the range of the correla-

tractive particle-particle interactioenhances the activation tions comprises the whole length of the channel, i.e., every
energyof H*.

D. Correlations 1

In Sec. lll we stated as a premise that the stochastic vario(Z;, Zj)
ablesy; and 7; are dependent on each other, and that these
correlations are responsible for the necessity of such gigantic
sets of equations. In order to get an idea of their strength and

range we inspect the correlation coefficients. To start with, 0.8
take the occupation-occupation dependence, ’
(Zi—ENE—EpN 0.7
o5, 5= G-
WEi—ENHE—E)D
0.6
2 07 N0 0;) (0= 0))
= ((rlln(rN) , 05 ! | 1 ! ! |
V(0,-07)(0,-07) 1 2 3 4 5 6 7 8
(53 J

where the sum is extended over all configurations, FIG. 13. Correlation coefficiento (S 3;) for ©=0.0001,
ooy =Zom0 Sy -0 Without the attractive v=4000 as a profile.
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site is dependent on every other one. The strength of these T ; T
correlations, however, varies with the parameters. As a mea- 08
sure of the overall correlations we define )

Q:Z W =
0ss= \/; [0(3i,3)]? (54) 0.6

and give its dependence on the parametessid w see Fig.
14 (the symbols are equal to Fig).5The maxima of the 0.4 1
curves lie in the transition region between the almost com- !
pletely occupied and the almost empty channel. This is in- PV AN
deed expected: In the almost empty file one has correlation- 02 - foA ST
free normal diffusion, while the processes in the almost LA N X
completely occupied file can be considered as “normal dif- 0 | P Ll -~
fl_JSlon pf a vacancy.” This |nd|cgtes once more that. the 0.0001 0.01 ] 100 10000
single-file character of the system is most pronounced in the
region in between.

Likewise, we investigate the correlations between the

residence times and the occupation via the correlation coef-
ficient

FIG. 14. Overall occupation-occupation correlatiegs depen-
dent on the parametetsand w.

[}

d — (l) i _@
— <(Ti_<7i>)(zj_<zj>)> (f’1""’i721tri+1u‘N) fr=0 Tei (T K )(O.J ])
Q(Ti 12])_

- 55)
VP =1 i) (0,-6f) (

W= (mUE - END

(here the sum extends only over all configurations within contrast togss, the correlationg ;s is perceptible over
o;=1), whose profile is shown in Fig. 15. If a site is occu- the whole range ob and, in particular, doesot vanish for
pied the particle obstructs the way of the other particles saw=1. These correlation coefficients confirm that the use of

that the positive correlation is understandable. Figure 1@he joint probabilites of; and 7; is indeed indispensable.
gives the total correlation

E. The residence time distributions
= S )72, 56 Finally, we give an example of the residence time distri-
0 \/Zj[e(r. D] (56)

butions itself. The curves were obtained according to Eqg.

05 T T i
ors
0.4 | w =1 -
01 -
0.0t --—-—- ;
03 F 0.001 ----- -
0.0001 ==
02 P
/‘f.\ ‘: \\‘: ‘
01 f - 01 | PNON
e ./ l')\\. : \\\i:
0 ! 1 1 1 1 ! 0 o .—;—_’f.:;fj';‘j‘;;.‘.'.“.‘..".'_‘l.‘_'. TSN __-‘-77/- -1 \4\__ _\
1 2 3 4 5 6 7 8 0.0001 0.01 1 100 10000
J v

FIG. 15. Correlation coefficiento(r;,%;) for »=0.0001, FIG. 16. Overall correlation between residence time and occu-
v=4000,a=0.5 as a profile. pation, ¢ ;s , dependent on the parametereind w (a=0.5).
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thus having its maximum at=0. This is true for the mean
residence time distribution @y diffusional channel, as can
be understood in a line of argumentation reminiscent of the
derivation of Eq.(36). Consider the channel at two arbitrary
consecutive instants of time and t+At, and consider an
arbitrary residence time. At timet, there will beP particles

in the channel having a residence time betweerand
7+dr. At time t+ At, some of these particles will have left
the file while a certain part, s&y’ with P’ <P, is still in the
channel and has, of course, now a residence time between
7+ At and 7+ At+d~. On the other handpo further par-
ticles than these can, &# At, have such a residence time.
Thus P’ is the number ofall particles having a residence
time betweerr+ At and 7+ At+dr. Since we assumed sta-
tionarity of the transport processes we need not pay any at-
tention to the time and may, in accordance with Etf),
write (P)=0ON¢(7)d7 and (P')=0Ne(7+At)dr. From
P’'<P we have(P')<(P), whence Eq(57) is confirmed.

0 10 20 30 40 50
o't

FIG. 17. Intracrystalline residence time distributiops(7) at
sitesi=1, ... ,4 andheir meanp(r) for N=8,v=10,0=0.1, and
a=0.5.

(36) by an adapted Runge-Kutta algorithm. In this case, the
memory problems are less serious, while the necessary com-
putation time is considerable. ) ) ) )

Figure 17 shows the distributions for a special set of pa- 1he stationary single-file system may be characterized by
rameters for sites=1, . . . ,4(the curves for the other half of the concentration profil®; and the residence time distribu-
the channelj=5, ... ,8 are, of course, identicatogether ~ tions ei(7). >From 'these prob§b|I|t|e§, important quantities
with the mean residence time distribution according to EqSuch as the mean intracrystalline residence W’iﬁ@a_:(l)l/«

(11). In Fig. 18 the same curves are plotted for a larger time2nd the effectiveness factarcan be found. We derived sets
interval and on a log scale. The straight lines in this plot, forof linear equations determining all these quantities. As a con-
sufficiently long times, indicate that, in this region, all resi- Sequence of the strong correlations in the single-file system,
dence time distributions become single exponentials with &he necessary number of equations per set is extremely high.
common exponerithe least eigenvalue of the set Eg6) of ~ FOr sufficiently short chann_els, howev_er, the sets o_f equa-
linear differential equatiorjs tions can be solved numerlcg_lly. In this way, the principal

The figures show that the mean residence time distribudependence of these quantities on the system parameters
tion ¢(7) is a monotonously decreasing function, could be studied.

Currently, the presented derivation is applied to a much
wider class of single-file systems as well, including channels
with unequal sitesconsideration of the residence time at a
certainsubset of sitesr even individual sites, systems where
the mutual passage of molecules within the channelots
10° excluded completelyreversible reactions, mixtures of the
particle species outside the channel, conversion between par-
ticles with unequal transport propertiesand long-range

V. CONCLUSION

d
EQD(T)<O VY, (57)

B s
7

0 500
U r

FIG. 18. Intracrystalline residence time distributiags(7) and

1000

1500

their meang(7) on a log scale. Parameters as in Fig. 17.

particle-particle interactions.

Some remarks concernimtgtailed balancenay be added.
It can be shown that the configurations satisfy a detailed-
balance relation, i.e., the ratio of the probabilities of two
arbitrary configurations is equal to the ratio of the transition
rates between them. Using this relation the probabilities
079N can be found in a much easier way than via Eq.
(28). We did not succeed, however, in finding an equivalent
relation for the quantitieg;”1 "N, The reason is that these
quantities correspond to theteady stateof the conversion
which might be interpreted as a driven diffusion. Driven dif-
fusive systems, however, are known not to fulfill detailed
balance. Finding similar relations is an important aim of fu-
ture work because this could considerably simplify the nu-
merical procedure and, in this way, facilitate the investiga-
tion of larger or more sophisticated systems.
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attractive particle-particle interaction. Stimulating discus-
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